بازاریابی شبکه ای

پایگاه جامع نقد و بررسی شرکتهای بازاریابی شبکه ای

بازاریابی شبکه ای

پایگاه جامع نقد و بررسی شرکتهای بازاریابی شبکه ای

لینک گروه تلگرام وبلاگ
خرید بک لینک دائمی و ارزان
کلمات کليدي

اسامی شرکت های هرمی

شرکت های هرمی چیست

شرکت های هرمی دارای مجوز

شرکت های هرمی بیز

بهترین شرکت بازاریابی شبکه ای در ایران

شرکت های هرمی مجاز

شرکت های هرمی گلد کوئست

رتبه بندی شرکت های بازاریابی شبکه ای در ایران

شرکت های هرمی پنبه ریز

شرکت های هرمی در ایران

بازاریابی شبکه ای بیز

بازاریابی شبکه ای بادران

نظر مکارم شیرازی در مورد بازاریابی شبکه ای

سایت رسمی مقام معظم رهبری

کلاهبرداری شرکت بیز

حکم شرعی بازاریابی شبکه ای

بازاریابی شبکه ای وزارت صنعت

بازاریابی شبکه ای تکسو

بازاریابی شبکه ای پنبه ریز

آیا بازاریابی شبکه ای قانونی است؟

نظر شورای نگهبان در مورد بازاریابی شبکه ای

قانون بازاریابی شبکه ای در مجلس

رشته تحصیلی بازاریابی شبکه ای

رشته بازاریابی شبکه ای در فنی حرفه ای

رشته بازاریابی شبکه ای در دانشگاه های ایران

بازاریابی شبکه ای فنی و حرفه ای

بازاریابی شبکه ای در سازمان فنی حرفه ای

بادران

دانلود کتاب فقه و بازاریابی چند سطحی + pdf

بازاریابی شبکه ای چیست

بايگاني
پيوندها
  • ۰
  • ۰

نکته مورد توجه در این مدل این است که در حالت عادی کم‌تر پیش می‌آید که فردی به طور هم‌زمان بتواند هر دو مشتری خود را پیدا کند، بلکه پس از مدتی جستجو، مشتری اول را پیدا می‌کند و پس از آن باید به دنبال مشتری دوم بگردد. این نکته در ابتدا ممکن است چندان جدی به نظر نرسد ولی خواهید دید که تأثیر بسیار قابل توجهی در آمارها خواهد گذاشت.


مانند مدل بازاریابان فوق‌حرفه‌ای در این مدل نیز سرعت رشد درخت گلدکوئست مورد توجه ما نیست و به دنبال محاسبه زمان اشباع جامعه نیستیم. تنها فرض می‌کنیم که در هر مقطع زمانی، زمان پیدا کردن یک مشتری، برای همه افراد، مقداری ثابت است که البته ممکن است این مقدار ثابت در مقاطع مختلف زمانی تغییر کند؛ در ابتدا که تنها تعداد اندکی آلوده شده‌اند یافتن یک مشتری بسیار ساده‌تر از مقطعی است که جمعیت انبوهی وارد درخت گلدکوئست شده‌اند. 
شکل مقابل مراحل اولیه رشد درخت گلدکوئست را نشان می‌دهد. در مرحله اول رأس درخت اولین مشتری را پیدا می‌کند. در ادامه، نه تنها رأس بالایی به دنبال مشتری دوم خود می‌گردد، بلکه مشتری قبلی نیز در جستجوی اولین طعمه خود است. لذا در مرحله دوم، دو نفر جدید، همان طور که در شکل می‌بینید، به درخت اضافه می‌شوند. اکنون اولین فرد دو بازوی خود را تکمیل کرده است و دیگر از طریق وی کسی به درخت اضافه نمی‌شود و لذا در این درخت ۴ رأسه، سه نفر به دنبال مشتری هستند و در نتیجه در مرحله بعد درخت ما ۷ رأس خواهد داشت. 
اگر تا چند مرحله دیگر رشد درخت را بررسی کنید می‌بینید که تعداد افراد آلوده در مراحل مختلف به این صورت است. 
۱، ۲، ۴، ۷، ۱۲، ۲۰، ۳۳، ۵۴، ... 
برای بررسی دقیق‌تر درخت مورد بحث تعداد رأس‌ها در مرحله  را  می‌نامیم. در این صورت  برابر ۱، و  برابر ۲ است. با اندکی توجه می‌توان رابطه‌ای بازگشتی برای این دنباله به دست آورد؛ دو مشتری‌ای که توسط نفر اول وارد بازی شده‌اند یکی یک مرحله و دیگری دو مرحله از رأس اولی عقب‌ترند، و لذا درختی که در مرحله n ام زیر آن دو تشکیل می‌شود دقیقاً مشابه درخت اصلی در یک مرحله پیش و درخت اصلی در دو مرحله پیش است. نتیجه این که در مرحله n ام در بازوی راست رأس بالایی  نفر و در بازوی چپ  نفر قرار دارد. اگر رأس بالایی را هم در نظر بگیریم رابطه بازگشتی زیر به دست می‌آید. 
 
به کمک این رابطه می‌توانیم تعداد اعضای درخت گلدکوئست را به دست آوریم. اگر دو طرف تساوی اخیر را با یک جمع کنیم و به علاوه (۱ + ) را بنامیم، به رابطه زیر می‌رسیم: 
 
اگر با دنباله معروف فیبوناتچی آشنا باشید می‌دانید که در آن‌جا نیز هر جمله دنباله برابر جمع دو جمله قبلی است. تفاوت دنباله Pn و دنباله فیبوناتچی ناشی از تفاوت در دو جمله اول است؛ ۰P برابر ۲، و ۱P برابر ۳ است، در حالی که ۰F و ۱F هر دو برابر ۱ اند. پس آیا ارتباطی بین جمله‌های دنباله Pn و جمله‌های دنباله فیبوناتچی وجود ندارد؟ اجازه دهید نگاهی به چند جمله اول هر دو دنباله بیندازیم. 
۸ ۷ ۶ ۵ ۴ ۳ ۲ ۱ ۰ n 
۸۹ ۵۵ ۳۴ ۲۱ ۱۳ ۸ ۵ ۳ ۲ Pn 
۳۴ ۲۱ ۱۳ ۸ ۵ ۳ ۲ ۱ ۱ Fn 
اکنون به سادگی می‌توان دید که Pn در واقع همان دنباله فیبوناتچی است که دو جمله اول آن حذف شده است، یعنی 
Pn = Fn+۲ 
و در نتیجه 
Sn = Fn+۲ - ۱ 
تا این‌جا توانستیم تعداد افراد آلوده در مرحله n را به دست آوریم. اکنون سؤال این است که در هر مرحله وضعیت تعادل افراد (یعنی مینیمم تعداد زیردست‌های راست و تعداد زیردست‌های چپ) چگونه است؟ 
جواب این سؤال در مورد شروع‌کننده درخت تلویحاً داده شده است. دو بازوی این فرد شامل ۱Sn- نفر و ۲Sn- نفر است و در نتیجه تعادلش ۲Sn- است که طبق محاسبات انجام شده برابر است با ۱ - Fn. 
با توجه به این که هر عضو دیگر درخت نیز وضعیتی شبیه نفر اول در چند مرحله قبل دارد، تعادل وی نیز به شکل ۱ – Fk است که در آن k برابر تعداد مراحلی است که پس از اتصال وی به درخت طی شده است. حال می‌خواهیم بفهمیم در مرحله n ام چند نفر چنین تعادلی دارند؟ 
در لحظه ورودِ آن عضو نوعی، n – k مرحله درخت رشد کرده است و در نتیجه، در آن مقطع، تعداد افراد آلوده از Sn-k-۱ به Sn-k رسیده است و لذا Sn-k-۱ - Sn-k نفر به درخت اضافه شده‌اند. با در نظر گرفتن مطالب بالا این مقدار برابر است با 
(Fn-k+۲ - ۱) - (Fn-k+۱ - ۱) 
و به عبارت دیگر Fn-k. 
پس تا اینجا نشان دادیم که در مدل ارایه شده در مرحله n ام Fn-k نفر تعادلشان برابر ۱ – Fk است. البته عبارت اخیر در یک مورد درست نیست؛ به این نکته توجه کنید که تعادل هر فرد در ابتدای ورود به بازی و هم‌چنین پس از گذشت یک مرحله صفر است (F۰ - ۱ = F۱ - ۱ = ۰) و لذا تعداد کسانی که تعادلشان صفر است برابر است با Fn + Fn-۱ که همان Fn+۱ است. در مراحل بعدی، پس از گذشت هر مرحله، تعادل افزایش پیدا خواهد کرد. در نتیجه عبارت مورد بحث برای k های بزرگ‌تر از یک، صادق است. 
به بیان دیگر در مرحله n ام نسبت کسانی که تعادلشان صفر است برابر است با 
(Fn+۲ - ۱)/ Fn+۱ 
و نسبت کسانی که تعادلشان ۱ – Fk است (۱ < k)، برابر است با 
(Fn+۲ - ۱)/ Fn-k 
این نسبت‌ها هنوز توصیف روشنی از وضعیت بازی ارایه نمی‌کنند. گزاره زیر به ما کمک خواهد کرد که به مدل مورد بحث را بهتر تحلیل کنیم. 
گزاره: وقتی n به بی‌نهایت میل کند، Fn/ Fn+۱ به φمیل می‌کند که φ، "عدد طلایی"، یعنی ریشه مثبت معادله درجه دو زیر است. 
φ۲ – φ – ۱ = ۰ 
۶۲ ۱/ ۵)/۲ ۱+) = φ 
اثبات این گزاره چندان مشکل نیست. اگر هم ایده‌ای برای اثباتش ندارید بد نیست نسبت جمله‌های متوالی دنباله فیبوناتچی را محاسبه کنید و "ببینید" که آیا به φ میل می‌کند یا خیر! 
گزاره مذکور نتیجه‌ای دارد که به کار می‌آید. 
نتیجه: برای هر k، وقتی n به بی‌نهایت میل کند، Fn/ Fn+k به φKمیل می‌کند. 
برای اثبات این موضوع کافی است توجه کنید که کسر مذکور با عبارت زیر برابر است. 
Fn/ Fn+۱ … F n+k-۲ / Fn+k-۱ Fn+k-۱/ Fn+k 
اکنون می‌توانیم توصیف بهتری از وضعیت مشتریان گلدکوئست ارایه دهیم. برای n های به اندازه کافی بزرگ، φ-۱ نسبت افرادی است که تعادلشان صفر است و نسبت کسانی که تعادلشان ۱ – Fk است (۱ < k)، برابر است با φ-K-۲. جدول زیر که در آن از مقدار تقریبی φ استفاده شده است گویاتر است. 
تعادل نسبت افرادی که تعادلشان برابر این مقدار است نسبت افرادی که تعادلشان کم‌تر یا مساوی این مقدار است 
0 68.1درصد 68.1درصد 
1 14.6درصد 76.4درصد 
2 9.0درصد 85.4درصد 
4 5.6درصد 91.0درصد 
7 3.4درصد 94.4درصد 
12 2.1درصد 96.6درصد 
20 1.3درصد 97.9درصد 
33 0.8درصد 98.7درصد 
54 0.5درصد 99.2درصد 
88 0.3درصد 99.5درصد 
143 0.2درصد 99.7درصد 
232 0.1درصد 99.8درصد 
اولین پورسانت هنگامی داده می‌شود که تعادل فرد به 3 برسد. پس طبق محاسبات انجام شده همیشه در حدود ۵/۴۸ درصد از کسانی که وارد این بازی شده‌اند هیچ پورسانتی دریافت نکرده‌اند! 
در این حالت که درخت اعضاء کم و بیش منظم رشد کند. با توجه به پیچیدگی محاسبات تحلیلی، باید به سراغ شبیه‌سازی کامپیوتری رفت.نتایج حاصل از یک شبیه‌سازی نسبتاً خوب، در زیر آمده است: 
کسانی که 560 دلار ضرر کرده‌اند تقریباً 6/66 درصد 
کسانی که 510 دلار ضرر کرده‌اند تقریباً 4/17 درصد 
کسانی که 260 دلار ضرر کرده‌اند تقریباً 7/7 درصد 
کسانی که 10 دلار ضرر کرده‌اند تقریباً 6/2 
کسانی که سود کرده‌اند تقریباً 7/5 
در این حالت هر مال‌باخته، به طور متوسط، بیش از 9/481 دلار از دست داده است و در مجموع بیش از 240 میلیون دلار وارد جیب کلاه‌برداران شده است! 
البته توجه کنید که این اعداد و ارقام در حالتی به دست آمد که درخت افراد آلوده کاملاً منظم رشد کرد. در حالت واقعی، که رشد درخت منظم نیست، وضع بسیار وخیم‌تر از این خواهد شد. 

نظرات (۰)

هيچ نظري هنوز ثبت نشده است

ارسال نظر

ارسال نظر آزاد است، اما اگر قبلا در بیان ثبت نام کرده اید می توانید ابتدا وارد شوید.
شما میتوانید از این تگهای html استفاده کنید:
<b> یا <strong>، <em> یا <i>، <u>، <strike> یا <s>، <sup>، <sub>، <blockquote>، <code>، <pre>، <hr>، <br>، <p>، <a href="" title="">، <span style="">، <div align="">
تجدید کد امنیتی
ساخت وبلاگ | ساخت وبلاگ | دانلود رمان عاشقانه | اپلود عکس | سئو | خرید بک لینک | خرید بک لینک دائمی | بک لینک ارزان | بک لینک | بک لینک انبوه | بک لینک دائمی |بک لینک در سیستمهای وبلاگدهی | بک لینک در وبلاگها | بک لینک رایگان | بک لینک رنک دار | بک لینک قوی | بک لینک موضوعی | بک لینک وبلاگ رنک دار | رپورتاژ آگهی |خرید بک لینک سایتهای رنکدار | خرید بک لینک قوی | خرید بک لینک های موضوعی | خرید بک لینک ارزان | خرید بک لینک انبوه | فروش بک لینک | بک لینک پیچ رنک بالا | اف سی بی چت | ابتین ساپورت | مکس نیوز|گلچین 98 |فان گپ|ماهان چت|چت توپ|نانسی چت|نوز چت|شیدا چت|نم نم چت|چت نشین |دروغ چت|ایران پولار|پیچک چت|اسکای پاتوق|افسون چت|محبت چت|عشق 200|باکس نیوز|پارسا گپ|دیانا مووی|نووا گیم|پی فور فیلم|سنا چت|چت ققنوس چت روم|چت روم|چت روم| خرید ساعت کاسیو | علی چت | جوک 19 | پایگاه خبری سهامدار نیوز | وایبر سافت | آنتیک موزیک | غزاله چت | الاله چت | ایف بلاگ | خرید بک لینک | آپلود عکس و فایل | فانیا | تلگرام موزیک | اتو چت | بیست اندروید | ظاهر چت | رویا طرح | زرنا نیوز| امگا چت | طنز بازار | شلیل چت | محیا چت | درهاج چت | اراد چت | چت ایمیل | | دانلود فیلتر شکن |دانلود تلگرام جدید|گروپ چت|دانلود رمان جدید نودهشتیا|دانلود سریال ایرانی طنز|خرید ساعت مچی|هاست ارزان | خرید هاست|طراحی سایت در تبریز|دانلود رمان|خرید کانکس مسکونی|کسب درآمد|ثبت شرکت|ثبت شرکت در کرج|قالب وبلاگ|طراحی سایت در کرج|آنالیز وب سایت|خرید اینترنتی ساعت مردانه پلیس|خرید ارزان پاوربانک|قاصدون|خرید ژل امیزشی|باما چت|تایتان چت | چت شلوغ|دانلود فیلم ایرانی با لینک مستقیم|جملات زیبا از بزرگان | جملات مفهومی|دانلود کلیپ خارجی|عکس هنرمندان|اخبار حوادث|مجله زیبایی بانوان|مجله اینترنتی مد|والپیپر های زیبا|دانلود فیلم ایرانی|دانستنی های پزشکی|مدل مانتو اسپرت|جملات عاشقانه | عکس های عاشقانه|جوک | اس ام اس خنده دار|اس ام اس مناسبتی|جوک|دانلود برنامه آشپزی اندروید|دانستنی های جنسی | آموزش روابط زناشویی|مجله تفریحی و سرگرمی|جملات عارفانه| جملات درمورد خدا|دکوراسیون داخلی ایرانی|دانلود آهنگ ایرانی غمگین|دانلود نرم افزار اندروید جدید|دانلود عکس بازیگران زن خارجی|بیوگرافی بازیگران ایرانی | عکس بازیگران ایرانی|آموزش طراحی سایت|دانلود بازی اندروید دخترانه|موزیک ویدیو جدید ایرانی|دانلود عکس دختر ایرانی|طراحی سایت در تبریز|دانلود آهنگ ایرانی|فیس باران|سایت ماشین|آبادان نیوز|الوان وب|دانلود اهنگ جدید|بیت کوین|گالری مدل لباس کودک|فال و طالع بینی|دانلود نرم افزار|دانلود رایگان نرم افزار|تعبیر خواب|زیست پلاس|دانلود آهنگ جدید ایرانی| تهران چت | چت تاپ ناپ | آرال چت |